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The characteristic time scales in ac ionic conduction near equilibrium are reassessed via consideration of a
selection of one-dimensional model problems. It is observed that, in addition to the two basic electrodiffusion
time scales, those of diffusion relaxation in the macroscopic- and Debye-scale domains, T and tD �the latter
identical with the bulk charge relaxation time�, some intermediate time scales are present in each system. It is
concluded that, due to insensitivity of the electric double layers to harmonic voltage disturbances, the short-
time response on the tD scale is determined by the quasielectroneutral bulk.
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Electrodiffusion of ions is a basic transport mechanism in
aqueous ionic systems such as electrolyte solutions and ion
exchangers. A clear understanding of the characteristic time
scales involved in electrodiffusion is important for the ratio-
nal design of microfluidic devices, such as microfluidic
pumps �1�, and for study of the related electrochemical sys-
tems by the methods of chronopotentiometry and electric
impedance spectroscopy �2�. A detailed review of the time-
dependent aspects of electrodiffusion was given in recent
papers by Bazant and Adjari with co-workers �3�.

In a macroscopic system, the characteristic electrodiffu-
sion time scales include the macroscopic diffusion time T
=L2 /D �or t0=O�1� scale in dimensionless terms�, with L the
macroscopic length scale and D typical ionic diffusivity; and
the microscopic time scale TD= lD

2 /D �or tD=O��2��, with lD
the Debye length and �= lD /L the crucial small parameter in
the system. This short-time scale universally originates in
any binary system of charges from a rapid diffusional relax-
ation of the large �O�1�� space charge of an O��� thin electric
double layer �EDL� along with relaxation to the small re-
sidual values �O��2�� of the space charge of a macroscopic
quasielectroneutral bulk.

In addition to these two fundamental time scales, various
additional ones may appear in particular electrodiffusional
systems. Thus, as pointed out and analyzed in �3�, charging
of an EDL at a perfectly blocking electrode �such that no dc
electric current flows through it upon application of a volt-
age� occurs at an intermediate time scale ti=O���—a geo-
metric average of t0 and tD. The appearance of this interme-
diate time scale was traced analytically and interpreted in
terms of an equivalent electric circuit consisting of a capaci-
tor with O��� capacitance, standing for the EDL at a block-
ing electrode, in series with a resistor with O�1� resistance,
standing for the adjacent electrolyte diffusion layer.

As transparent as this interpretation is, a question arises as
to how general the ti time scale is when the assumption of a
perfect blocking of the conduction current is relaxed. In par-
ticular, what are the typical time scales for an ac current
passage through a charge-selective solid, such as an ion ex-
change membrane? Are there any additional time scales be-
sides t0, tD, and ti? In this paper we will attempt to answer
these question by analyzing a selection of simple one-
dimensional �1D� models for an ion exchange membrane in a
binary electrolyte solution near complete ionic equilibrium
�zero dc bias�. In a subsequent study we shall address the
same questions away from equilibrium, under a finite dc cur-
rent bias. In particular, in that study we shall assess the fea-
sibility of probing the extended nonequilibrium space charge,
developing in such systems near the limiting current �4�, by
applying an ac signal superimposed on a constant dc bias.

We precede the formulation of the model problems with
the following straightforward remark. For a binary electro-
lyte, assuming equal ionic diffusivities D, the expression for
the dimensionless total electric current I reads

I = − �2�xt + j+ − j−. �1�

Here � is the dimensionless electric potential �normalized by
the thermal potential kT /e�, x is the dimensionless spatial
coordinate �normalized by the macroscopic length scale L�, t
is the “slow” dimensionless time �normalized by T�, and
j+ , j− are the dimensionless ionic fluxes defined as

j� = − �c�x � c��x� . �2�

The first term in the right-hand side of Eq. �1� is the displace-
ment current, whereas the difference of j+ and j− forms the
conduction current. Thus, e.g., through a finite difference ap-
proximation of Eq. �1�, the entire system may be represented
in terms of an equivalent circuit, as a series connection of
elementary circuits, each consisting of a capacitor connected
in parallel with a resistor. Assuming an order-� capacitance
and resistance for each, typical values for an EDL, every
such elementary circuit is characterized by the tD time scale.*boris@bgu.ac.il
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In this picture, the perfect blocking, modeled as an O���
capacitance in series with O�1� resistance, may be recovered
by assuming that the resistance of one of the series elements
becomes infinite.

Below we shall analyze three model problems: two for a
solution layer flanked by either two perfectly blocking elec-
trodes, or two ideal permselective membranes �ideal non-
blocking electrodes�, and a three-layer setup resulting from
inserting a nonideal cation exchange membrane between the
two ideal cation-selective membranes of the second model.
The first case is identical with that analyzed in Ref. �3�,
albeit there the analysis was carried out for a stepwise rather
than harmonically applied voltage. The second model con-
cerns the analysis of a time-dependent version of a formula-
tion used on several previous occasions to study the nonequi-
librium space charge �4�. The third model with a nonideal
middle membrane is meant to bridge the two.

The first model reads

c�t = − j�x, �3�

�2�xx = c− − c+, �4�

��0,t� = − ��1,t� =
V

2
+

�

2
ei�t, �5�

j��0,t� = j��1,t� = 0, �6�

�
0

1

c�dx = 1. �7�

Here V is a constant voltage bias applied between the block-
ing electrodes, inducing an equilibrium EDL at them, and �
is a small perturbation parameter. Equation �3� is the ionic
mass conservation �Nernst-Planck� equation, Eq. �4� is the
Poisson equation with space charge in the right-hand side
due to the local ionic concentration disbalance. The bound-
ary conditions �6� stand for impermeability for ions of the
blocking electrodes, whereas the normalization condition �7�
specifies at unity the average ionic concentration in the layer.
For small harmonic perturbations we seek a solution to the
problem �3�–�7� in the form

c� = e��0 + �C��x�ei�t, � = �0 + ���x�ei�t. �8�

Here �0 is the electrical potential for the unperturbed state,

�0 = 2 ln

1 − tanh
V

8
exp

− x
�2�

1 + tanh
V

8
exp

− x
�2�

1 + tanh
V

8
exp

x − 1
�2�

1 − tanh
V

8
exp

x − 1
�2�

. �9�

For the electric current we have

I = ��ei�t, �10�

where � is the complex electrical conductivity or admittance,
defined as the reciprocal of the electrical impedance Z�V�,

Z�V,�� =
def 1

�
= Zr�V,�� + iZi�V,�� . �11�

Here the real part Zr=Re Z is the resistance and Zi=Im Z is
the reactance. For a zero voltage, there is no EDL in the
unperturbed initial state, and an analytical solution of the
linearized problem for the perturbations yields

Z�0,�� =
1

2 + �2�i
−

�2

��
i . �12�

The first term in Eq. �12� is the electrical impedance of the
quasielectroneutral bulk, whereas the second term stands for
a blocking EDL charging impedance. Their corresponding
characteristic frequencies are

�1 = O��−1� =
1

ti
, �2 = O��−2� =

1

tD
�13�

with

�3 = O��−3/2� , �14�

their geometric average, appearing as the locus of the maxi-
mum ���2�−3/2� on the reactance-frequency plot. For the
general case �V�0�, numerical integration of the linearized
problem for perturbations yields

Z�V,�� = Z�0,�� + �Zr
0��� + Zi

0���i�V −
F�V�
��

i . �15�

To determine the correction F�V�, we calculate numerically

the deviation Zd =
def

Z�V ,��−Z�0,�� for various � to infer that
the expression �Zd�V ,�1�−Zd�V ,�2��� / �1 /�1−1 /�2� de-
pends only on the applied voltage V:

F�V� =
def

�
�1�2

�2 − �1
�Zd�V,�1� − Zd�V,�2�� . �16�

Similarly, considering the expression Z�V ,��−Z�0,��
+F�V�i / ���� for various �, we conclude that it is indepen-
dent of � and proportional to V,

�Zr
0��� + iZi

0����V =
def

Z�V,�� − Z�0,�� +
F�V�
��

i . �17�

In Fig. 1 we present plots of the corrections Zr
0���, Zi

0���,
and F�V�. We note the exponential vanishing of the expres-
sion F�V�+�2 �see inset to Fig. 1�b��, standing in good
agreement with the classical Gouy-Chapman theory �5� pre-
dicting an exponential dependence of the EDL capacitance
CDL on high 	 potentials �potential drop across the EDL, V /2
in our case�:

CDL =
�

�2
cosh

V

4
. �18�

The second model for ideal cation-exchange membranes
reads

c�t = − j�x, �2�xx = c− − c+, �19�

j−�0,t� = j−�1,t� = 0, �20�
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c+�0,t� = c+�1,t� = N , �21�

��0,t� = − ��1,t� =
�

2
ei�t, �22�

�
0

1

c−dx = 1. �23�

Here N
1 is the fixed charge density in the membranes.
Equation �20� asserts impermeability of the membranes for
coions, Eq. �21� fixes the counterion concentration in the
membranes equal to the concentration of the fixed charges,
whereas the normalization condition �23� specifies at unity
the average coion concentration in the system. We seek a
solution to the problem �19�–�23�, in the form �8�. Lineariza-
tion followed by integration across the EDL, using the con-
tinuity of the electrochemical potential of counterions across
the EDLs and antisymmetry with respect to the middle point
x= 1

2 , yields the following equations for the harmonic pertur-
bations in the quasielectroneutral bulk:

C+�x� = C−�x� = C�x� , �24�

i�C = Cxx, �i��2 + 2��x = − � , �25�

C�1/2� = ��1/2� = 0, �26�

C�0� + ��0� = 1/2, Cx�0� − �x�0� = 0. �27�

Solution of Eqs. �25�–�27� yields

Z =
1

2 + i��2 +
tanh��/2�

�
, � = �1 + i���

2
. �28�

The first term in Eq. �28� is the electrical impedance of the
quasielectroneutral bulk, whereas the second term is EDL
related in the sense that the equilibrium across the EDL
transforms a diffusional concentration delay of the bulk into
an electric potential delay. In the absence of an EDL, the
same effect would be induced by differing ionic diffusivities.
At the high-frequency edge this term yields a square root
frequency dependence in accordance with the classical War-
burg picture �6�. This is illustrated by a Nyquist plot in Fig.
2. We note that the loci of the maxima on the Nyquist plot
�see Eq. �28� and Fig. 2� correspond to the time scales t0 and
tD:

�4 � 5.082, �5 � 2�−2. �29�

We also note the appearance of the time scale tP=O��4/3� as
the locus of the minimum on that plot, where the “Bulk” and
“Warburg” branches meet. �The corresponding frequency
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tance corrections for nonzero volt-
age: �a� Zr

0 �continuous line� and
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0 �dashed line� frequency depen-
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�6 � 2−1/3�−4/3 �30�

appears as the geometric average of the parameters ��2 and
�� controlling Z in Eq. �28��. For this same frequency the
contributions of the two terms to the expression �28� for Zi
balance. Thus, for �
�−4/3 the bulk dominates, yielding

Z �
1

2 + i��2 . �31�

We note that heretofore the time scale tP and its correspond-
ing length scale �2/3 were related to the limiting current re-
gime characterized by transition of the EDL from a quasi-
equilibrium to a nonequilibrium state accompanied by the
appearance of an extended space charge, added to the usual
one of a quasiequilibrium EDL �4�. To make this emergence
of the �2/3 length scale in both contexts more intuitive, let us
trace it twice through suitable heuristic dc and ac arguments.

Consider first an order-unity conduction current I carried
by a single positive charge carrier with concentration p. The
expression for the conduction current

p�x = − I , �32�

combined with the Poisson equation

�2�xx = − p , �33�

yields the equation

�2�x�xx = I . �34�

By estimating �x ,�xx in Eq. �34� as

�x 
 �−1, �xx 
 �−2, �35�

where � is the length scale to be evaluated, we arrive at the
estimate

� 
 �2/3. �36�

Next, let this time I be an order-unity displacement current

− �2�xt = I , �37�

yielding the estimate

�2

�T
= I , �38�

where T is the relevant time scale. Assuming the diffusion
relation

T = �2 �39�

between the length and time scales, we obtain upon substi-
tution into Eq. �38� the estimate �36� for the length scale.

We stress that the quasielectroneutral bulk dominates the
harmonic time response for all high frequencies, �
1. This
stands in contrast with the perfect blocking case, for which
the entire time response is determined by the charging dy-
namics of the EDL. In the current example lack of contribu-
tion from the EDL to the time response scales is caused by
the insensitivity of the EDL at a nonblocking interface to
current or voltage disturbances �vanishing to leading order

perturbations of the ionic concentrations and electric poten-
tial in the EDL�. This latter follows from the boundedness of
the displacement current in the EDL, implying

���2�x� = O�1� ⇒ C�0� = O� 1
��

 . �40�

This vanishing disturbance in the EDL is a general feature of
any nonblocking interface. To illustrate this, let us modify
Eq. �28� by introducing in the second term the EDL capaci-
tance in parallel with the Warburg element in accordance
with the Randles equivalent circuit:

Z =
1

2 + i��2 +
1

�

tanh��/2�
+ iCDL�

. �41�

The impedance Z in Eq. �41� corresponds to a series connec-
tion of the following two circuits. The first circuit is formed
by the bulk resistance � 1

2 � in parallel with the bulk capaci-
tance ��2�. The second circuit is formed by the Warburg el-
ement in parallel with the EDL capacitance �O����. We
evaluate the EDL capacitance CDL=O��� from a numerical
solution of the problem �19�–�23� �see inset to Fig. 2�. We
note the domination of the Warburg impedance over the EDL
capacitance in the Randles circuit up to extremely high fre-
quencies ��O��−2�. For �=O��−2�, both contributions to
the impedance balance, whereas, as mentioned previously,
the overall reactance in this frequency range is dominated by
the quasielectroneutral bulk.

The analysis of a mixed setup for an electrolyte layer
flanked by a blocking electrode and an ideal cation-exchange
membrane shows that the impedance in this case is a super-
position of the respective terms for blocking electrodes �15�
and ideal ion-exchange membranes �28�. In this expression
all four time scales �13�, �14�, �29�, and �30� are present. In
terms of equivalent circuits, this corresponds to a series con-
nection of the following three elements: �1� the blocking
electrode capacitance, �2� bulk resistance in parallel with the
bulk capacitance, and �3� a Warburg element.

Finally, to connect the perfectly blocking electrode model
�3�–�7� with that for ideal membranes �19�–�23�, we consider
a three-layer setup resulting from inserting a nonideal cation-
exchange membrane between the two ideal cation-selective
membranes of the second model. The effect of the EDL on
the characteristic time scales �frequencies� will be illustrated
by considering different fixed charge densities in the middle
membrane �the infinite fixed charge density limit corre-
sponds to an ideal cation-exchange membrane� and different
membrane resistances �the infinite resistance limit corre-
sponds to a perfect blocking�. Thus, the three-layer problem
to be analyzed reads �left electrolyte layer �0�x�1�–middle
ion-exchange membrane �1�x�2�–right electrolyte layer
�2�x�3��

c�t = − j�x, �2�xx = Q�x� + c− − c+, �42�

Q�x� = Q�H�x − 1� − H�x − 2�� , �43�

RUBINSTEIN et al. PHYSICAL REVIEW E 79, 021506 �2009�

021506-4



��0,t� = − ��3,t� = �ei�t, �44�

j−�0,t� = j−�3,t� = 0, �45�

c+�0,t� = c+�3,t� = N , �46�

�
0

3

c−dx = 2 +
− Q + �Q2 + 4

2
. �47�

The dimensionless ionic fluxes are specified by Eq. �2� in the
electrolyte layers �0�x�1 and 2�x�3� and equal

j� = − D0�c�x � c��x� �48�

inside the membrane �1�x�2�. Here D0=Dm /D is the rela-
tive ionic diffusivity inside the membrane, Dm being the di-
mensional ionic diffusivity equal for both ions. In Eq. �43�
Q�0 is the fixed charge density �negative� in the membrane
and H�x� is the Heaviside function, whereas the boundary
conditions �45� and �46� and the normalization condition
�47� are analogous to conditions �20�, �21�, and �23� in the
previous model. Similarly to the one-layer models �3�–�7�
and �19�–�23�, the solution to the problem �42�–�48� is
sought in the form �8�. The suitable linearized problem for
the space-dependent amplitudes C��x� and ��x� is solved
numerically. We distinguish between the electrical imped-
ance of the entire three-layer system defined by Eq. �11� and
that of a single electrolyte layer �2�x�3, for definiteness�
given by

Ze = Zr
e + iZi

e =
��2� − ��3�

�
. �49�

In Fig. 3�a� we present the reactance-frequency plots for dif-
ferent values of fixed charge density in the middle mem-

brane. We note the validity of the approximation Eq. �31� for
all fixed charge densities, and the good agreement in the
high-frequency range of the numerical solution in the three-
layer model with the analytic one for two ideal cation-
selective membranes. We recall that in this latter the analysis
of EDL dynamics was skipped through the use of continuity
of the electrochemical potential of counterions across the
EDLs. In Fig. 3�b� we present similar plots for different
middle membrane diffusivities along with that for the zero-
voltage case in a mixed setup for which the analysis yields

Z =
1

2 + ��2i
+

1

2
� tanh �/2

�
−

�2

��
i . �50�

We note in the limit of infinitely high membrane resistance,
D0�1, the appearance of the time scales �13�, �14�, �29�, and
�30�, characteristic of a perfect blocking.

Summarizing, upon the transition from perfect blocking to
unimpeded ionic conductance the sets of characteristic time
scales transform from O���, O��3/2�, O��2� to O�1�, O��4/3�,
O��2�. In any system the short-time response on the tD scale
is entirely determined by the quasielectroneutral bulk, as op-
posed to the electric double layers. This is due to the almost
complete insensitivity of a quasiequilibrium EDL to har-
monic voltage �current� disturbances in the O��−2� frequency
range. In equivalent circuit terms, this suggests that the clas-
sical Randles circuit should be complemented by an order-�2

bulk capacitance in parallel with the bulk resistance.
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